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Abstract
Spatio-temporal pattern of the stick–slip motion of a gel-sheet pulled on a glass substrate is
observed. The sliding takes place via the propagation of the wave of detachment (Schallamach
wave). At large pull velocity, the detached region is a stripe which moves regularly with
constant speed and the frictional force shows a periodic time dependence. As the pull velocity is
decreased, the detached region is separated into bubbles which move around irregularly. In the
irregular state, the frictional force shows chaotic time dependence and the statistics of the event
of the force drop obeys a power law similar to the Gutenberg–Richter law known in
earthquakes. In the regular region, the detachment wave is analyzed theoretically and the
velocity and lengths are obtained as a function of the pull velocity. The transition from the
regular to chaotic behavior is shown to be related to the spontaneous wetting of the gel.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamic process of stick–slip motion is important in
the sliding friction of soft elastic materials such as rubber
and gel on a hard substrate [1–16]. In many situations,
the sliding takes place via the propagation of slip regions.
A classical example is the Shallamach wave [7–13] which
appears when rubber is slid on a smooth substrate. In the
Shallamach wave, some regions of the rubber are detached
from the substrate and propagate along the interface. This
causes the motion of the material relative to the substrate
despite the fact that there is no slippage taking place in the
contact region. The Schallamach wave has been considered to
be the main mechanism of the sliding friction above a certain
sliding velocity.

The slip–stick motion of soft matter on a hard substrate
has also been studied as a model for earthquake dynamics.
Rubio and Galeano [14] studied the slippage of gelatin gel
on various hard surfaces (Teflon, plexiglass and stainless steel)
and found various types of slip–stick motion: steady slippage,
the regular propagation of the slip region and chaotic motion.
Baumberger et al [15, 16] studied the phenomena in a more
systematic way and reported how the slip region moves in
time and how it is related to the frictional force and the gel
parameters. In their system, the mechanism of slip motion was

considered to be different from the Schallamach wave since
there is no observable detached region and the slip region heals
gradually.

In this paper, we shall report an experimental system
which is suited for the study of the spatio-temporal pattern
of slip–stick motion. It is an adhesive gel-sheet backed by a
plastic film pulled on a glass substrate. In this system, the
relative motion takes place via the propagation of the wave
of detachment (the Schallamach wave). The advantage of the
system is that (i) unlike the classical work of Schallamach (soft
rubber slid on a substrate), the geometry is simple and suited
for theoretical analysis and (ii) the detached part is visible by
a simple setting and is therefore suited for the study of the
change of the spatial pattern.

We shall show that this system undergoes a transition
from the regular detachment wave motion to an irregular
motion of the detached region. The frictional force oscillates
periodically in the former case, while it shows chaotic behavior
which obeys the power law statistics. We shall conduct
a simple analysis for the motion of the regular detachment
wave and predict the velocity of the detachment wave as a
function of the pull velocity of the gel. We also discuss
the condition for the transition from the regular to chaotic
motion.
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Figure 1. Schematic figures of the experimental apparatus for (a) sliding of an adhesive gel-sheet and (b) visualization of the
contact/non-contact regions.

2. Experiment

2.1. Sample

A polyethylene-type adhesive gel-sheet (thickness H = 5 mm,
commercial name: Super Gel, Kihara Sangyo Co. Ltd, Japan)
is cut into a sheet of width W = 70 mm and span L = 150 mm.
A PET film (t = 50 μm) was adhered to one side of the gel-
sheet in a bent state. As a result, the sample has a spontaneous
curvature (R = 75 mm) toward the frictional surface. Since
the PET film is inextensible, only bending and shearing are
allowed for the deformation of the gel. Viscoelasticity of
the gel was measured by a rheometer (Haake, parallel plate,
d = 20 mm) for the frequency range from 0.01 to 10 s−1 at 23◦.
The storage modulus was about 15 kPa for all the range and
the loss modulus changed from 0.1 kPa (0.01 s−1) to 1.0 kPa
(10 s−1).

2.2. Friction experiment

Figure 1(a) shows the experimental set-up. The right end of
the gel-sheet is fixed to the load cell and the left end of the
gel-sheet is free. The gel-sheet was placed on a glass substrate,
which was driven at a constant velocity V . The frictional force
F acting on the gel-sheet was measured by the load cell. The
pull velocity was varied from 1000 to 1 μm s−1. During the
friction experiments, we observed no solvent coming out from
the gel. Therefore the lubrication effect is negligible in our
system, unlike the gel systems reported in [15, 16].

2.3. Visualization

The spatial pattern of the detached region was observed as is
shown in figure 1(b). To enhance the contrast between the
contact region and the non-contact region (i.e. the detached
region), a black rubber sheet was adhered onto the bottom
side of the glass substrate and the gel-sheet was illuminated by
white light. The sliding images were taken by a CCD camera
(VHX-200, Keyence, Japan).

3. Results and discussion

3.1. Sliding patterns

Figures 2(a)–(c) are typical snapshots of the gel-sheet at
various pull velocities. The dark region stands for the area

where the gel-sheet is in contact with the glass substrate and
the pale region stands for the area where the gel is lifted above
the glass substrate.

At a large pull velocity of V = 1000 μm s−1 (figure 2(a)),
a regular stripe pattern is seen. As the glass plate is pulled
relative to the gel-sheet, a non-contact region is generated at
the trailing edge of the gel-sheet and propagates towards the
leading edge.

At a small velocity of V = 2 μm s−1 (figure 2 (c)), a
bubble-like pattern is seen. Small non-contact domains are
generated at the trailing edge and move into the bulk of the
sample, which is similar to the bubbles previously reported by
Chaudhury et al [17]. The difference is that the bubbles wander
around in the sample: interestingly, they stop occasionally or
even move backwards.

At an intermediate velocity (V = 50 μm s−1, figure 2 (b)),
the motion becomes transient: the stripe pattern looks unstable
and breaks into two or more pieces in the middle of the sample.

While the observed phenomena are similar to those of the
Schallamach wave [7–13] in the sense that there is no apparent
slippage and the detachment waves propagating via the crack
opening and resticking, the underlying mechanism is different
from the original one [7]: there is no buckling instability in
our system and the crack opening of our system is due to the
release of the shear strain energy [18].

3.2. Frictional forces

Figures 3(a)–(c) show the time evolution of the frictional force
F for the three cases shown in figure 2. It is seen that
the frictional force varies with time: cyclic force oscillations
are observed at large pull velocities and, as we decrease
the pull velocity, it has wider frequency components. In
particular, the drop of the frictional force at smaller pull
velocities is reminiscent of the Gutenberg–Richter law for
earthquakes [19–21]. This will be discussed in section 3.3.

Figure 4 shows the time-averaged force Fave plotted
against the pull velocity V (the error bars are taken for three
different trials). In the stripe region, the average force increases
with the increase of the pull velocity. On the other hand,
in the bubble region, the frictional force is almost constant.
In the transient region, there is no definite transition velocity
from one region to another and the force had large variations
among different trials. Figures 2 and 3 suggest that the system
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Figure 2. Snapshot of the sliding behavior at pull velocities (a) V = 1000 μm s−1, (b) V = 50 μm s−1 and (c) V = 2 μm s−1. Arrows stand
for the moving directions of each non-contact region. The time shown in the figures displays the time elapsed since the experiment was
started.

Figure 3. Time–force curves at (a) pull velocity V = 1000 μm s−1, (b) V = 50 μm s−1 and (c) V = 2 μm s−1. The points (a1–c4)
correspond to the snapshots in figure 2.

undergoes a transition from the stripe (regular) to the bubble
(chaotic) state at intermediate pull velocity.

3.3. Size distribution of the force drop

As is seen in figure 3, the frictional force varies irregularly
with time. In order to study the statistics for the force
variations, we plotted in figure 5(a) the cumulative probability
distributions of the force drop �F , which is defined by the
top-to-bottom force for each force-dropping (energy releasing)
event. The force drop corresponds to the earthquake moment
in seismology [22, 23] and also to the displacement in granular
systems [24, 25]. At large pull velocity, only large events
(�F > 1 N) are observed. On the other hand, at smaller pull
velocity, the force drop obeys a power law distribution, where

log10(Prob(event � �F)) ≈ a − b log10(�F). (1)

Such a power law distribution suggests that the dynamics
in the bubble state corresponds to the self-organized
criticality [22, 23, 26–28], which has been observed in granular
systems [24, 25]. As far as we know, this is the first observation
of the SOC state in a homogeneous elastic system. The slope
(which is called the b value in seismology) changes from 1.8
(V = 1 μm s−1) to almost 0 as we increase the pull velocity,
as shown in figure 5(b).

It is important to note here that the removal of the
measurement noise is needed to obtain the correct size
distributions, since the calculated force drop value is greatly
influenced by the measurement noise. In our analysis, we
first measured the force without loading and obtained the noise
level as 0.05 N. We then ‘rounded down’ the raw force data
by 0.05 N. To check the validity of the noise level, we also
analyzed the sensitivity of the rounded-down value to the size
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Figure 4. Pull velocity–time averaged friction force curve.

Figure 5. (a) Cumulative probability distributions for the force drop
�F from V = 1000 to 1 μm s−1 and (b) the slope (b value) of the
straight region for each cumulative distribution in (a). In order to
obtain the plots, we rounded down the raw force data by the noise
value (0.05 N), which was determined by experiments without
loading.

distributions from 0.05 to 0.2 N. The rounded-down value
affected the number of events, but did not affect the slopes so
much. We finally decided to adopt 0.05 N as the rounded-down
value.

3.4. Modeling the frictional behavior at larger pull velocities

We now discuss the frictional behavior of the gel-sheet at large
pull velocity, where the sliding is caused by the steady motion
of the detached region.

Figure 6(a) shows an idealized configuration of the gel in
the steady sliding state. Since the top PET film is inextensible
and the bottom substrate is moving with velocity V , a shearing
stress is created within a gel. In order to release the shearing
energy, a part of the gel is detached from the substrate but sticks
again after some time. This creates a non-contact region at the
interface between the gel and the substrate. Let Lc and Ln be
the length of the contact region and the non-contact region per
stripe, respectively.

As the bottom substrate moves, both the contact region
and the non-contact region moves rightward with the velocity
v. This movement is caused by the detachment of the gel
from the substrate at the left end of the contact region and the
resticking at the right end of the contact region. We shall call
the detaching end the opening crack edge and the resticking
end the closing crack edge.

The detachment is a fracture process taking place at the
interface between the gel and the substrate. Let Gc be the work
needed to decrease the unit area of the contact region: Gc is
called the critical energy release rate in fracture mechanics.
It is known that Gc is much larger than the thermodynamic
surface energy since the detachment of the gel is associated
with a large energy dissipation taking place near the crack tip.
Gc is a function of the velocity v of the crack tip [29]. We
assume the following model for the adhesion hysteresis [8, 9]:

Gc(v) = G0

(
v

v0

)α

, (2)

where G0 is the thermodynamic work of adhesion, v0 is
the characteristic velocity and α is the exponent. The
parameters v0 and α can be related to the viscoelasticity of the
material [29].

We now discuss the shear strain in the gel. We assume
that the shear strain is zero at the closing crack edge. Since
the substrate moves at velocity V with the detachment wave
propagating at velocity v, the attached gel segment separated

v (>> V)(a) t = t0

Lc Ln

H
V

(b) t = t1 (<< t0 + T)

R

Contact Non-contact

P

P’

Q

Lc

Ln

L

G

G’
Q’

Closing crack 
edge

Opening crack 
edge

)(tan–1
critcrit γθ = 0=γ

critθ2

Fixed

Figure 6. Geometry of our model and snapshots of the deformation of the gel-sheet at (a) t = t0 and (b) t = t1.
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from the closing crack by a distance d is sheared by

γ (d) = V t (d)

H
= d

H

V

v
, (3)

where H is the thickness of the gel and t (d) = d/v is the
contact time elapsed since the gel element at d last restuck.
From equation (3), the shear strain of the gel increases linearly
with the distance from the closing crack edge. Therefore the
shear strain is largest when d is equal to Lc (the length of the
contact region) and the critical shear strain is given by

γcrit = Lc

H

V

v
. (4)

Since the gel cannot slip in the region contacting the
substrate, the displacement of the gel relative to the substrate
is caused by an inchworm-like motion. To evaluate the relative
displacement gained by a cycle of the inchworm motion, we
consider the situation shown by figure 6(a), where the crack
opening has just occurred at the material point Q at the bottom
of the gel-sheet. Let G be the material point located at the
substrate touching the point Q and P be the material point in the
gel which is above the point Q in the natural state. (The line
segment PQ would be normal to the substrate if the shearing
force of the gel is set to zero.) In figure 6(a), the gel is sheared
and therefore PQ makes an angle θcrit = tan−1(γcrit) against
the vertical line. After some time, the detachment wave passes
through the part PQ and we will have the situation shown in
figure 6(b). Here the material points P and Q have moved to
point P′ and Q′, respectively. Since the gel is shear free at the
moment of resticking, the line segment P′Q′ is now normal to
the substrate. Notice that the points P′ and Q′ have moved to
the right relative to the points P and Q due to the passage of the
detachment wave, while the point G′ has moved little since the
pull velocity V is much less than the velocity of the detachment
wave v (V � v).

The relative displacement (effective slip) per wave �L
consists of two parts:

�L = �Lc + �Ln, (5)

where �Lc is the displacement caused by the release of the
shear strain in the contact region and �Ln is the displacement
caused by the passage of the detachment wave. �Lc is given
by the critical shear strain γcrit:

�Lc = Hγcrit. (6)

On the other hand, �Ln is given by the difference between
the horizontal distance Ln and the contour distance of the
detached part of the gel. As we mentioned in the previous
section, our gel-sheet has a spontaneous curvature 1/R. We
assume that the detached part of the gel is a force-free state
and therefore has this curvature 1/R. Furthermore, we assume
that the detached sheet is lifted approximately at an angle
θcrit = tan−1(γcrit) against the substrate as was discussed by
Kendall [30]. (Actually, the radius maybe altered by an applied
tension or gravitational force, but this simplification will give
a rough estimate for the non-contact length Ln.) With these

assumptions, the horizontal distance Ln of the detached part is
given by

Ln = 2R sin θcrit. (7)

On the other hand, the contour distance is given by 2Rθcrit. The
difference gives �Ln:

�Ln = 2R(θcrit − sin θcrit) ≈ R

3
θ3

crit ≈ R

3
γ 3

crit. (8)

From equations (6) and (8), the total relative displacement per
wave (equation (5)) is given by the following equation:

�L ≈ Hγcrit + R

3
γ 3

crit. (9)

On the other hand, the total relative displacement is also linked
with the period of the wave T and the pull velocity V . From
equations (4) and (7)

�L = V T = V
Lc + Ln

v
≈ V

v

(
H

v

V
+ 2R

)
γcrit. (10)

From equations (9) and (10), we obtain the following relation:

γcrit =
√

6
V

v
. (11)

Equation (11) is the final result obtained by the geometrical
consideration for the steady sliding of the gel-sheet. According
to equation (11), the critical strain (the strain at the crack
opening edge) decreases with the increase of the crack
propagation velocity v. This is because the contact time
decreases with the increase of v.

Now let us consider the kinetics. When the gel-sheet
is detached from the substrate, an elastic strain energy G ≈
(μH/2)γ 2

crit is released per unit area [18], where μ is the shear
modulus of the gel. This energy is used to open the crack. If
we assume that all the released elastic energy is consumed in
the dissipation associated with the crack opening, G is equal to
Gc(v) (here we neglect the energy dissipation for the closing
crack [29]). The relation G = Gc(v) gives

μH

2
γ 2

crit ≈ G0

(
v

v0

)α

. (12)

From equations (11) and (12), we obtain the following results:

v = v0

(
3μH

G0

) 1
1+α

(
V

v0

) 1
1+α

, (13)

γcrit = √
6

(
3μH

G0

)− 1
2(1+α)

(
V

v0

) α
2(1+α)

. (14)

Furthermore, from equations (4) and (7)

Lc = √
6H

(
3μH

G0

) 1
2(1+α)

(
V

v0

)− α
2(1+α)

, (15)

Ln = 2
√

6R

(
3μH

G0

)− 1
2(1+α)

(
V

v0

) α
2(1+α)

. (16)
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Figure 7. Experimental results for the pull velocity dependence on (a) wave velocity, (b) contact and non-contact length and (c) friction force.
The slopes in the figures were determined by the least-squares fitting.

The average force can be also calculated by

Fave = Lc

Lc + Ln

μγcrit

2
LW ≈ μγcrit

2
LW,

where L and W are the sample length and width, respectively.
From equation (14), we have

Fave ≈
√

6μLW

2

(
G0

3μH

) 1
2(1+α)

(
V

v0

) α
2(1+α)

(17)

which satisfies the energy dissipation relation [8, 9]

FaveV = nW Gc(v)v, (18)

where n = L/(Lc + Ln) ≈ L/Lc is the number of waves
propagating along the interface.

Equations (13)–(18) are the results of our analysis for
the regular stripe-pattern region. The equations predict how
the crack propagation velocity v, the distance between the
stripes Lc and Ln, and the frictional force Fave depend on
the experimental conditions such as pull velocity V , the shear
modulus of the gel μ and the thickness of the gel-sheet H .
Such an analysis has not been made in the previous works on
the conventional Shallamach wave [8, 9], where one has to
analyze the buckling of rubber sheet sliding on a substrate. The
advantage of our gel-sheet system is that we can make a simple
model for the detachment wave and can actually calculate the
wave velocity and wavelength as a function of the pull velocity.

We then compare the theoretical prediction with the
experimental results. Figure 7(a) shows the wave velocity
v as a function of the pull velocity V . The wave velocity
increases with the increase of the pull velocity (or the apparent
sliding velocity) V , but they are not proportional to each other:
the wave velocity v increases in proportion to V 0.75. In our
experimental range, v is much larger than V , but they approach
each other as the pull velocity increases. From the slope of
the curve in figure 7(a), we determined the parameter α in
equation (13). This gives α = 1/3.

Figure 7(b) shows how the average length of the contact
region Lc and that of the non-contact region Ln change with
the pull velocity V . For small V , the contact region is much
larger than the non-contact region. As the pull velocity V
increases, the contact region decreases while the non-contact

region increases. Accordingly, the fraction of the contact area
decreases with the pull velocity. The experiments indicate that
Lc ∝ V −0.13 and Ln ∝ V 0.13. On the other hand, the theory
predicts that the exponents are −0.125 (equation (15)) and
0.125 (equation (16)) if α is taken to be 1/3. This is in good
agreement with experiment.

Figure 7(c) shows how the average frictional force F
depends on the pull velocity. The frictional force increases
with the increase of the pull velocity, but the increase is weak:
the slope of the curve is 0.15 experimentally. On the other
hand, the theory (equation (17)) predicts that the slope is 0.125,
which is again in good agreement with the experimental value.

The theory predicts how the parameters v, Lc, Ln and F
change when the shear modulus of the gel μ and the thickness
of the gel-sheet H are changed. Preliminary experiments show
that the theory is predicting the right direction of the change,
but the detailed comparison will be done in a separate paper.

3.5. Collapse of the stripe patterns

We now discuss the mechanisms responsible for the collapse
of the stripe patterns. When the stripe pattern is stable, the
velocity of the crack opening edge vo and the velocity of the
crack closing edge vc are equal to each other. As we decrease
the pull velocity V , both vo and vc decrease. Since the crack
opening is driven by the applied shear, vo will approach zero as
V goes to zero. On the other hand, vc will have a lower limit,
since the gel will spontaneously adhere to the substrate, or wet
the substrate.

In order to see the wetting phenomena of the gel onto
the substrate, we measured the spontaneous wetting velocity
of the gel in a force-free state by the method shown in figure 8.
A circular gel-sheet of radius = 50 mm was hung vertically
parallel to the glass plate with small separation (�1 mm). The
center of the gel-sheet was then gently brought into contact
with the substrate and the velocity of the contact line was
measured. This gave the ‘wetting velocity’ of the gel-sheet
on the substrate vwet, which is vwet = 4.0 ± 1.5 mm s−1.

When the crack closing velocity vc becomes less than vwet,
the closing crack overtakes the opening ones, as is illustrated
in figure 9, and the stripe pattern will become unstable. We
therefore conjecture that the transition from the regular stripe
pattern to the irregular bubble pattern takes place when the

6
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Figure 8. Schematic figure of the experimental apparatus for the
measurement of the spontaneous wetting velocity.

Figure 9. Schematic figure of collapse of stripe patterns at
intermediate pull velocities.

crack propagation velocity v in the regular region becomes
equal to the wetting velocity vwet.

To check this conjecture, we extracted the curve of
figure 7(a) to smaller velocity and estimated the pull velocity
V ∗ which gives the crack propagation velocity equal to vwet =
4.0 mm s−1. This gives V ∗ ∼ 50 μm s−1, which is in the
middle of the transition region in figure 4, suggesting that our
conjecture is reasonable.

4. Conclusion

We studied the motion of a soft and sticky gel-sheet sliding
on a rigid substrate. We observed a regular stripe pattern at a
large pull velocity and a bubble pattern at a small pull velocity.

We found that the force drop obeys the power law statistics
where the slope (b value) varies depending on the pull velocity.
We proposed a simple model for the regular detachment wave
at large pull velocity and predicted how the wave velocity,
the contact and non-contact length and the average force
depend on the pull velocity and other experimental parameters.
The pull velocity dependence has been shown to agree well
with experiments. We showed that the transition from the
stripe pattern to the bubble pattern occurs when the crack
opening velocity becomes comparable to the velocity of the
spontaneous wetting of the gel-sheet on the substrate.
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